2 research outputs found

    Effect of Inductance and Requirements for Surge Current Testing of Tantalum Capacitors

    Get PDF
    Surge current testing is considered one of the most important techniques to evaluate reliability and/or screen out potentially defective tantalum capacitors for low-impedance applications. Analysis of this test, as it is described in the MIL-PRF-55365 document, shows that it does not address several issues that are important to assure adequate and reproducible testing. This work investigates the effect of inductance of the test circuit on voltage and current transients and analyzes requirements for the elements of the circuit, in particular, resistance of the circuit, inductance of wires and resistors, type of switching devices, and characteristics of energy storage bank capacitors. Simple equations to estimate maximum inductance of the circuit to prevent voltage overshooting and minimum duration of charging/discharging cycles to avoid decreasing of the effective voltage and overheating of the parts during surge current testing are suggested

    Effect of Environments on Degradation of Molding Compound and Wire Bonds in PEMs

    Get PDF
    Degradation of wire bonds (WBs) is one of the major factors limiting reliability of plastic encapsulated microcircuits (PEMs) at high temperatures. Use of PEMs in military and aerospace applications requires extended and thorough evaluation of encapsulating materials and reliability of packages in harsh environments. However, the effect of environmental conditions on characteristics of molding compounds (MCs) and reliability of wire bonds has not been studied sufficiently to date. In this work, two types of PEMs in QFP-style packages have been stored in different environments at temperatures from 130 C to 225 C for up to 4,500 hours in some cases. To assess the effect of oxygen, the parts were aged at 198 C in air and vacuum chambers. The effect of humidity was evaluated during long-term highly accelerated temperature and humidity stress testing (HAST) at temperatures of 130 C and 150 C. Thermo-mechanical and thermo-gravimetrical analyses were used to evaluate the effect of environment on characteristics of molding compound used. Measurements of contact resistances of wire bonds and their mechanical strength were employed to monitor degradation of wire bonds throughout the testing. Correlation between degradation of MC and WB failures has been analyzed. The effect of environmental conditions on accelerating factors of WB failures has been assessed, and the mechanism of wire bond degradation due to the presence of moisture and oxygen is discussed
    corecore